The given equations are:
(a − b)x + (a + b)y = a2 − 2ab − b2 ...(i)
(a + b)(x + y) = a2 + b2 ...(ii)
From (ii), we have:
(a + b)x + (a + b)y = a2 + b2 ...(iii)
On subtracting (iii) from (i), we get:
(a − b − a − b)x = (a2 − 2ab − b2 − a2 − b2 )
⇒ −2bx = −2ab − 2b2
⇒ −2bx = −2b(a + b)
⇒ x = (a + b)
On substituting x = (a + b) in (i), we get:
(a − b)(a + b) + (a + b)y = a2 − 2ab − b2
⇒ a2 − b2 + (a + b)y = a2 − 2ab − b2
⇒ (a + b)y = −2ab
⇒
Hence, the required solution is and .