A bag contains ₹510 in the form of 50 p, 25 p and 20 p coins in the ratio 2 : 3 : 4. Find the number of coins of each type respectively.
400, 600, 800
Let the number of 50 p, 25 p and 20 p coins be 2x, 3x and 4x.
Then 2x×50100+3x×25100+4x×20100=510
⇒x1+3x4+4x5=510
⇒20x+15x+16x20=510
⇒51x20=510
⇒x=510×2051
⇒x=200
Hence, 2x=2×200=4003x=3×200=6004x=4×200=800
Therefore, number of 50 p coins, 25 p coins and 20 p coins are 400, 600, 800 respectively.