The correct option is
C (n−m)(n−m−1)n(n−1)Two tickets out of n can be picked up in nC2=n(n−1)2 ways.
Now, we find all such pairs of numbers from 1 to n whose difference is more than m.
Such numbers are (1,m+2),(1,m+3),(1,m+4),...,(1,n);(2,m+3),(2,m+4),...,(2,n);
(3,m+4),(3,m+5),...,(3,n);...(n−m−2,n−1),(n−m−2,n);(n−m−1,n)
The number of such pairs
=(n−m−1)+(n−m−2)+(n−m−3)+...+2+1
(An A.P. of (n−m−1) terms)
=(n−m−1)(n−m−1+1)2=(n−m)(n−m−1)2
Hence the required probability =(n−m)(n−m−1)n(n−1)