Let us consider the events as:
E1: Bag X is selected
E2: Bag Y is selected
A : Drawn balls are 1 Black and 1 white
P(E1)=12 and P(E2)=12
Here, P(AE1)=4C1×2C16C2=4×215=815
P(AE2)=3C1×3C16C2=915
Now, we have to find P(E2A)
Using Bayes theorem
P(E2A)=P(E2)×P(AE2)P(E1)×P(AE1)+P(E2)×P(AE2)
∴ Required probability
=12.91512×815+12×915=930830+930
=917