wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

A ball is dropped from a height of 5 m onto a sandy floor and penetrates the sand up to 10 cm before coming to rest. Find the retardation of the ball is sand assuming it to be uniform.

Open in App
Solution

A ball is dropped from a height of 5 m (s) above the sand level.
The same ball penetrates the sand up to 10 cm (ss) before coming to rest.
Initial velocity of the ball, u = 0
And,
a = g = 9.8 m/s2 (Acceleration due to gravity)
Using the equation of motion, we get:
s=ut+12at2
5=0+129.8t2t2=54.9=1.02t=1.01 s

Thus, the time taken by the ball to cover the distance of 5 m is 1.01 seconds.
Velocity of the ball after 1.01 s:
v = u + at
⇒ v = 9.8 × 1.01 = 9.89 m/s
Hence, for the motion of the ball in the sand, the initial velocity u2 should be 9.89 m/s and the final velocity v2 should be 0.
ss = 10 cm = 0.1 m
Again using the equation of motion, we get:
as=v22-u222ss=0-9.8922×0.1as-490 m/s2
Hence, the sand offers the retardation of 490 m/s2.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Acceleration Due to Gravity
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon