A ball is dropped from height h on a floor. If the coefficient of restitution is e, find the total distance covered by the ball before coming to rest on the ground.
Open in App
Solution
Using Newton's law of impact,
v2−v1=e(u1−u2)......(1)
For, reaching height h1
v2=0;u2=0;u1=−√2gh
(-ve sign indicates the downward direction)
Putting this values in (1) we get,
−v1=eu1
⇒√2gh1=e√2gh
⇒h1=e2h
Similarly, for reaching h2, h2=e4h and so on,
So, the total distance travelled by the ball is,
d=h+2h1+2h2+....+
∴d=h+2e2h+2e4h+2e6h+...
⇒d=h+2e2h(1+e2+e4+...)
⇒d=h+2e2h(11−e2)
⇒d=h(1−e2)+2e2h1−e2
∴d=h(1+e21−e2)
<!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}-->
Hence, (D) is the correct answer.