wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

A ball is projected with a velocity u at an elevation from a point distance d from a smooth vertical wall in a plane perpendicular to it. After rebounding from the wall, it returns to the point projection, proves that u2sin2α=gf(1+1/e). Hence find the maximum distance d for which the ball can return to the point of projection.

Open in App
Solution

The only vertical force on the ball is mg throughout its motion because during impact it experiences a horizontal force from the wall. We can use
uy112gr2=νy
Let t be the total time of flight.
0=usinαt12gt2
t=2usinαg
Due to impact with the wall at B, the normal component (i.e. horizontal component) of velocity is reversed and because e times.
Horizontal velocity before impact =ucosα
and horizontal velocity after impact =eucosα
Time taken to reach the wall, t1=d(ucosα)
and time taken to come back to O from B,
t2=d(eucosα)we have t1+t2=t
ducosα+deucosα=2usinαgu2sin2α=gd[1+1e]
As sin2α1,
gdu2[1+1e]1eu2g(1+e)
1029416_993204_ans_05b5c69eaba24dc58e7b88b2aac7a131.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Falling Balls in Disguise
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon