The correct option is
D 12√8gh+g2(Δt)2If the ball is reaching height h then, displacement=h
Time taken=t1... (say)
Acceleration=−g
Initial velocity=u1
∴from the equations of motion
S=ut+12at2∴h=u1t1+12(−g)t21.....(i)
If the ball is reaching height 2hthen, displacement=2h
Time taken=t1+△t
Acceleration=−g
Initial velocity=u2
Therefore from equations of motion
2h=u2(t1+△t)−12g(t1+△t)2.....(ii)
Also we know from the equations of motion that
v=u+at∴0=u1−gt1....(iii)
& 0=u2−g(t1+△t).....(iv)
∴u1=gt1,u2=gt1+g△t=u1+g△t
∴From equations (i),(ii),(iii),(iv)
we get(ii)−(i)=h={(u1+g△t)(t1+△t)−12g(t1+△t)2−u1t1−12gt21}
∴u1=12√8gh+g2(△t)2 Thus option C