The correct option is A 6.55 m/s
Given h=12.4,v=?
∴v2=u2+2gh
i.e.,v2=u2+2×9.8×12.4
=u2+243.04
Kinetic energy of the ball when it just hits the wall
=12mv2=12m(u2+243.04)
The K.E. of ball after the impact
=(100−15)100×12m(u2+243.04)
=85100×12m(u2+243.04)
Let v2 be the upward velocity just after the collision with the ground.
So, 12mv22=85100×12m(u2+243.04)
v22=85100(u2+243.04)
Now, taking upward motion
v=0,u=v2
∴v2=u2−2gh
0=85100(u2+243.04)−2×9.8×12.4
85100u2=36.46
u2=36.46×10085=42.89
u=6.55m/s