A ball of mass m and radius r rolls along a circular path of radius R. Its speed at the bottom (θ=0∘) of the path is v0.Find the force of the path on the ball as a function of θ.
Open in App
Solution
h=(R−r)(1−cosθ).....(i) Kinetic energy at angle θ is, K=75(12mv20)−mgh ∵ In case orpure rolling KT=57k ∴12mv2=12mv20−57mgh ∴v2=v20−107gh.....(ii) Equation of motion at angle θ is, n−mgcosθ=mv2(R−r) ∴N=mgcosθ+m(R−r)(v20−107gh) Substitnting value of h from Eq. (i) ∴N=mgcosθ+(mR−r) {v20−107g(R−r)(1−cosθ)} =mg7(17cosθ−10)+mv20(R−r) Force of friction, f=mgsinθ1+mr2I (forpure rOlhng to take place) =mgsinθ1+52(I=25mr2) =27mgsinθ