A ball of mass m is initially at rest. A variable force starts acting on it in a fixed direction, whose magnitude changes with time. The force - time graph is shown in the figure.
Find the speed of the ball at the end of time t=T seconds.
A
35vm/s
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
34vm/s
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
43vm/s
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
23vm/s
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B34vm/s Impulse is given by J=∫Fdt...(i) ⇒Impulse=Area under F-t curve = Area of given trapezium =12(T+T2)×mvT=3mv4
From Impulse-momentum theorem: J=mΔv=m(vf−vi)...(ii)
Equating Eq. (i) and (ii) 3mv4=m(vf−vi)=m(vf−0)
(ball is initially at rest) ∴vf=34vm/s
Hence, vf is the required speed of the ball at time t=Ts.