A ball of mass m moving with a speed u collides elastically with another identical ball moving with velocity u2. Find the angle between velocities after collision if they collide obliquely and u2 = 0
π2
Let velocity of the first ball after collision be v1 making an angle θ1 with the horizontal anti-clockwise and the velocity of second ball be v2 making an angle θ2 with the horizontal clockwise.
mu = mv1cosθ1 + mv2cosθ2 ............(i)
0 = mv1sinθ1 − mv2sinθ2 ............(ii)
12mu2 = 12mv21 + 12mv22 ...........(iii)
Squaring and adding (i) and (ii), we get: u2 = v21 + v22 + 2v1v2cos(θ1 + θ2)
Using (iii), we have : u2 = v21 + v22
∴v21+v22=v21+v22+2v1v2 cos(θ1+θ2)⇒2v1v2 cos(θ1+θ2)=0cos(θ1+θ2)=0θ1+θ2=90∘=π2