At ground level
(Z=0)Atmospheric pressure P=1atm.
Volume V=104m3
Temperature T=20+273.15K
At height h
Pressure P=?
Volume V=104m3He
Temperature T=20+273.15K
Mass of empty balloon =1.3×106g
At equilibrium on the ground
Total mass =mballoon+mload+mHe
To achieve equilibrium at Z=h
Total mass=mballoon+0.80(mload)+mHe
According to archimedes principles the displaced air supports the weight of balloon + load.
At height Z=h.
The mass of displaced air =mballoon+0.80(mload)+mHe
At equillibrium on the ground
The mass of displaced air =mballoon+mload+mHe
Barometric formula,
PP0=ρρ0=exp−MghRT
Ideal gas behaviour
PV=nRT
Units J=kgm2s−2
The volume of air displaced by the load is neglected in comparison to the volume of a balloon.
At the ground level, the mass of displaced air =ρ0V
At height h, the mass of displaced air =ρV
The equilibrium conditions are
mballoon+mload+mHe=ρ0V−−−−−−(1)
mballoon+0.80(mload)+mHe=ρV−−−−−−−−(2)
Divide equation (2) by equation (1)
ρρ0=mballoon+080(m(load)=mHemballoon+mload+mHe
mHe=MHePVRT
mHe=4.09/mol×1atm×104m3×103L/m38.20578×10−2L atm/mol/K+293.15K=1.663×106g
ρ0V=mair=28.8g/mol×1atm×104m3×103L/m38.20578×10−2Latm/mol/K×293.15K=1.1972×107g
From equation (1)
mload=1.1972×107g−[1.3×106g+1.663×106g]=9.01×106g
Substituting in equation (3)
ρρ0=0.85=expMghRT
0.85=exp−28.8g/mol×1kg/1000g×9.80665m/s2×hm8.31451J/k/mol×293.15K
0.85=exp1.159×10−4h
h=1.402×103m