A balloon of radius r subtends an angle 30º at the eye of an observer, while the angle of elevation of its centre is 60º. The height of the centre of the balloon is
A
r√6(√3+1)2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
r√3(√3−1)2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
r√6(√3−1)2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
r√6(√3+1)√2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Ar√6(√3+1)2 Let the eye of the observer be at a point A. So, ∠DAC=30∘∠OAB=60∘.
In ΔOAD and ΔOAC,
∠ODA = ∠OCA = 90° (Tangent at any point on the circumference of a circle makes 90° with the centre of the circle.)
OA = OA (Common)
OD = OC (Radius) ∴ΔOAD≅ΔOAC (By RHS Congruence Rule) ∠OAD=∠OAC=∠DAC2=30∘2=15∘ [By CPCT(Corresponding parts of congruent triangles)]
Let the radius of the circle be r. InΔAOC, sin15∘=OCOA ⇒sin(45∘−30∘)=rOA ⇒rOA=sin45∘cos30∘−cos45∘sin30∘ [sin(A-B)=sinAcosB-cosAsinB] ⇒rOA=1√2×√32−1√2×12=(√3−1)2√2 ⇒OA=2√2r(√3−1)×(√3+1)(√3+1) ⇒OA=2√2r(√3+1)3−1=2√2r(√3+1)2 ⇒OA=r√2(√3+1) ....(i) InΔAOB, sin60∘=OBOA ⇒√32=OBr√2(√3+1) [From (i)] ⇒OB=r√2(√3+1)×√32 ⇒OB=r√6(√3+1)2
Therefore, the height of the center of the balloon is ⇒r√6(√3+1)2
Hence, the correct answer is option (a).