Given A=[1tanx−tanx1]
|A|=1+tan2x
AT=[1−tanxtanx1]
Here,c11=1,c12=tanxc21=−tanx,c22=1
adjA=[1tanx−tanx1]T=[1−tanxtanx1]
A−1=11+tan2x[1−tanxtanx1]
Now, ATA−1=11+tan2x[1−tanxtanx1]=[1−tanxtanx1]
ATA−1=11+tan2x[1−tan2x−2tanx2tanx1−tan2x]
⇒ATA−1=[cos2x−sin2xsin2xcos2x]
|ATA−1|=sin2x+cos2x=1
Given ,f(x)=det.(ATA−1)
⇒f(x)=1
⇒f(f(f(f.......f(x))))n times=1