wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

A=[cosθsinθsinθcosθ], then An=

A
[ncosnθsinnθsinnθcosnθ]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
[cosnθcosθsinθsinθ]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
[cosnθsinnθsinnθcosnθ]
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
[cos(n+1)θsin(n+1)θsin(n+l)θsin(n+1)θ]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C [cosnθsinnθsinnθcosnθ]
Given , A=[cosθsinθsinθcosθ]
A2=[cosθsinθsinθcosθ][cosθsinθsinθcosθ]
=[cos2θsin2θ2sinθcosθ2sinθcosθcos2θsin2θ]
=[cos2θsin2θsin2θcos2θ]
A3=A2A=[cos2θsin2θsin2θcos2θ][cosθsinθsinθcosθ]
=[cos2θcosθsin2θsinθcos2θsinθ+sin2θcosθcos2θsinθsin2θcosθcos2θcosθsin2θsinθ]
=[cos3θsin3θsin3θcos3θ]
Hence, An=[cosnθsinnθsinnθcosnθ]
Alternative Method:
We will prove by Mathematical induction method
Given , A=[cosθsinθsinθcosθ]
Hence, the result is true for n=1.
Now, let the result is true for n=k
Then Ak=[coskθsinkθsinkθcoskθ]
So, we will prove for n=k+1.
Ak+1=AkA
=[coskθsinkθsinkθcoskθ][cosθsinθsinθcosθ]
=[coskθcosθsinkθsinθcoskθsinθ+sinkθcosθcoskθsinθsinkθcosθcoskθcosθsinkθsinθ]=[cos(k+1)θsin(k+1)θsin(k+1)θcos(k+1)θ]
Hence, the result is true for n=k+1.
So, by principle of mathematical induction , the result is true for all nN
An=[cosnθsinnθsinnθcosnθ]

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction to Limits
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon