The correct option is C [cosnθsinnθ−sinnθcosnθ]
Given , A=[cosθsinθ−sinθcosθ]
A2=[cosθsinθ−sinθcosθ][cosθsinθ−sinθcosθ]
=[cos2θ−sin2θ2sinθcosθ−2sinθcosθcos2θ−sin2θ]
=[cos2θsin2θ−sin2θcos2θ]
A3=A2A=[cos2θsin2θ−sin2θcos2θ][cosθsinθ−sinθcosθ]
=[cos2θcosθ−sin2θsinθcos2θsinθ+sin2θcosθ−cos2θsinθ−sin2θcosθcos2θcosθ−sin2θsinθ]
=[cos3θsin3θ−sin3θcos3θ]
Hence, An=[cosnθsinnθ−sinnθcosnθ]
Alternative Method:
We will prove by Mathematical induction method
Given , A=[cosθsinθ−sinθcosθ]
Hence, the result is true for n=1.
Now, let the result is true for n=k
Then Ak=[coskθsinkθ−sinkθcoskθ]
So, we will prove for n=k+1.
Ak+1=AkA
=[coskθsinkθ−sinkθcoskθ][cosθsinθ−sinθcosθ]
=[coskθcosθ−sinkθsinθcoskθsinθ+sinkθcosθ−coskθsinθ−sinkθcosθcoskθcosθ−sinkθsinθ]=[cos(k+1)θsin(k+1)θ−sin(k+1)θcos(k+1)θ]
Hence, the result is true for n=k+1.
So, by principle of mathematical induction , the result is true for all n∈N
An=[cosnθsinnθ−sinnθcosnθ]