A birdlover at p(x,y,z) from a house watches two birds sitting on the branches of another tree at A(2,5,8) and B(3,7,2) such that AP=BP , show that 2x+4y−2z+31=0
Given , AP=BP
⇒AP2=BP2
⇒(x−2)2+(y−5)2+(z−8)2=(x−3)2+(y−7)2+(z−2)2
[∵distance between two points(x1,y1,z1) and (x2,y2,z2)is√(x2−x1)2+(y2−y1)2+(z2−z1)2]
⇒x2+4−4x+y2+25−10y+z2+64−16z
=x2+9−6x+y2+49−14y+x2+4−4z
∴2x+4y−12z+31=0