The correct option is D 13
Let B denote black coloured die and R denote red coloured die. Then, the sample space for the given experiement will be:
⇒S=⎧⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩(B1,R1),(B1,R2),(B1,R3),(B1,R4),(B1,R5),(B1,R6)(B2,R1),(B2,R2),(B2,R3),(B2,R4),(B2,R5),(B2,R6)(B3,R1),(B3,R2),(B3,R3),(B3,R4),(B3,R5),(B3,R6)(B4,R1),(B4,R2),(B4,R3),(B4,R4),(B4,R5),(B4,R6)(B5,R1),(B5,R2),(B5,R3),(B5,R4),(B5,R5),(B5,R6)(B6,R1),(B6,R2),(B6,R3),(B6,R4),(B6,R5),(B6,R6)⎫⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎬⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎭
Let A be the event of 'obtaining a sum greater than 9' and B be the event of 'getting a 5 on black die'
Then A={(B4,R6),(B5,R5),(B5,R6),(B6,R4),(B6,R5),(B6,R6)}
and B={(B5,R1),(B5,R2),(B5,R3),(B5,R4),(B5,R5),(B5,R6)}
⇒A∩B={(B5,R5),(B5,R6)}
So, P(A)=636=16,P(B)=636=16,P(A∩B)=236=118
Now, we know that by definition of conditional probability,
P(A/B)=P(A∩B)P(B)
Now by substituting the values we get
⇒P(A/B)=1/181/6=618=13