Here, m1=1.2kg,u1=20cm/s,m2=1.2kg,u2=0
If v1 and v2 are velocities of the two blocks after collision, then according to principle of momentum
m1u1+m2u2=m1v1+m2v2=1.2×20+0=1.2v1+1.2v2 ... (i)
velocity of approach =u1−u2=20cm/s
velocity of separation=v2−v1
By definition, e=v2−v1/u1−u2=3/5=v2−v1/u1−u2
Therefore,v2−v1=20×3/5=12 --- (ii)
From (i) and (ii),
v_1=4cm/s,v2=16cm/s,
Loss in K.E. =1/2m1u21−1/2(m1)v21−1/2m2v22=1/2×1.2(20/100)2−1/2(1.2)(4/100)2−1/2×1.2(16/100)2
=2.4×10−2−0.096×10−2−1.536×10−2
Loss in K.E.=0.768×10−2=7.7×10−3J