The correct options are
A Maximum extension in the upper spring is
2.82 m D Equilibrium position of the block from initial released position is
1.5 m Given:
m=2 kg,k=10 N/m,g=10 m/s2 Let the compression of the bottom spring be '
x'. Then elongation in upper spring will be
1+x.
Applying work-energy theorem:
Wext=ΔU+ΔK.E At maximum elongation of upper spring (and maximum compression of lower spring), kinetic energy of block will be zero.
∴ΔK.E=0 and there is no work done by any external force.
Hence,
ΔU=0 i.e loss in gravitation potential energy of the block is converged to elastic potential energy of the springs
12k(1+x)2+12kx2=mg(1+x) ⇒12×10×(1+x)2+12×10×x2=20(1+x) ⇒5(1+x2+2x)+5x2=20+20x ⇒10x2−10x−15=0 ⇒2x2−2x−3=0 So,
x=2±√4+244=2+√284=1.822 m ∴ Maximum extension in upper spring
=1+1.822=2.82 m Consider FBD of
2 kg block at equilibrium (let
x be the compression of lower spring)
kx+k(1+x)=mg ⇒2kx=mg−k=20−10 ⇒2×10×x=10 ⇒x=0.5 m So, equilibrium position of block from initial position
=1+0.5 =1.5 m