The correct option is
A T12The general equation of S.H.M. is
x=ASin(ωt)
where A is the amplitude
ω is the angular frequency
ω=2πT
From x=0 to x=A2
0=ASin(ωt)⇒ωt=0⇒t=0
A2=ASin(ωt)⇒Sin(ωt)=12⇒ωt=Sin−1(12)
t=π6×T2π=T12
Time taken=∣∣∣T12−0∣∣∣=T12
For other cases:
From x=0 to x=A√2
0=ASin(ωt)⇒ωt=0⇒t=0
A√2=ASin(ωt)⇒Sin(ωt)=1√2⇒ωt=Sin−1(1√2)
t=π4×T2π=T8
Time taken=∣∣∣T8−0∣∣∣=T8
From x=A to x=A2
A=ASin(ωt)⇒Sin(ωt)=1⇒ωt=Sin−1(1)
t=π2×T2π=T4
A2=ASin(ωt)⇒Sin(ωt)=12⇒ωt=Sin−1(12)
t=π6×T2π=T12
Time taken=∣∣∣T12−T4∣∣∣=T6
From x=−A√2 to x=A√2
−A√2=ASin(ωt)⇒Sin(ωt)=−1√2⇒ωt=Sin−1(−1√2)
t=5π4×T2π=5T8
A√2=ASin(ωt)⇒Sin(ωt)=1√2⇒ωt=Sin−1(1√2)
t=π4×T2π=T8
Time taken=∣∣∣T8−5T8∣∣∣=T2
From x=A√2 to x=A
A√2=ASin(ωt)⇒Sin(ωt)=1√2⇒ωt=Sin−1(1√2)
t=π4×T2π=T8
A=ASin(ωt)⇒Sin(ωt)=1⇒ωt=Sin−1(1)
t=π2×T2π=T4
Time taken=∣∣∣T4−T8∣∣∣=T8