The correct option is B 14 min
from equation (14.3.)
ΔΘ1=ΔΘ1e−kt
for the interval in which temperature falls from 40 to 35 C.
(35 - 20) = (40 - 20)e−k10
⇒e−10k=34⇒k=ln4310
for the next interval
(30 - 20) = (35 - 20)e−kt
⇒e^{-kt}\, =\, \displaystyle \frac{2}{3}\, \quad\, \quad\, \Rightarrow \, \quad\, kt\, =\, ln \displaystyle \frac{3}{2}\Rightarrow\, \quad\, \displaystyle \frac{\left ( ln \displaystyle \frac{4}{3}\right)t}{10}\, =\, \ln\, \displaystyle \frac{3}{2}\, \quad \quad\, \Rightarrow\, t\, =\, 10\, \displaystyle \frac{\left(ln\, \displaystyle \frac{3}{2})}{\left(ln\, \displaystyle \frac{4}{3} \right )}$ minute = 14.096 min
Aliter : (by approximate method)
for the interval in which temperature falls from 40 to 35∘C
<Θ>=40+352=37.5∘C
from equation (14.4) ⟨dΘdt⟩=−k(<Θ>−Θ∘)
⇒(35∘C−40∘C)10(min)=−K(37.5∘C−20∘C)
⇒K=135(min−1)
fortheinterval inwhich temperature. falls from 35∘C to 30∘C
<Θ>=35+302=32.5∘C
from equation (14.4)
30∘C−35∘Ct=−(32.5∘C−20∘C)K
⇒ required time, t = 512.5×35min=14min