A body is displaced from −→rA=(2^i+4^j−2^k)mto−→rB=(8^i+14^j+6^k)m under the action of a constant force →F=(2^i+3^j+6^k)N. If the initial kinetic energy of the body is 15J, Find the kinetic energy of the body at the end of displacement.
A
180J
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
105J
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
30J
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
90J
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B105J Total displacement of the body is given by →S: →S=−→rB−−→rA =(8^i+14^j+6^k)−(2^i+4^j−2^k) ∴→S=(6^i+10^j+8^k)m work done by the constant force →F in displacing the body from position Ato B: WF=→F.→S Or, WF=(2^i+3^j+6^k).(6^i+10^j+8^k) ∴WF=12+30+48=90J ⇒Applying work energy theorem on the body from initial to final position: WAll Forces=ΔKE=(KE)f−(KE)i ∴WF=(KE)f−15J 90J=(KE)f−15J∵given(KE)i=15J ∴(KE)f=90+15=105J So, kinetic energy at the end of displacement is 105J.