The correct option is B 31.5∘ C
Let T : temperature at time 't'
T0: temperature of the surrounding (air)
Given, T0=25∘C
By Newton's law of cooling
dTdt=−K(T−T0)
{ K → constant of integration}
dT(T−T0)=−Kdtintegrating,weget
ln(T−T0)=−Kt+C
T - T0=e−ktec;
{ C → constant of integration}
Given at t = 0, T = 60∘
⇒60−25=e−oec
ec=35
at t = 15 min
T = 40∘C
40 - 25 = e−15k×35
e15K=3515=73
at t = 30 min
T - 25 = e−k3035
= (e15k)(−2)×35=(73)−2×35
T = 25 + 949×35
= 31.429∘C