A bullet of mass 10 g moving horizontally at a speed of 50√7 ms/ strikes a block of mass 490 g kept on a frictionless track as shown in figure (9-E17). the bullet remains inside the block and the system proceeds towards the semicircular track of radius 0.2 m. Where will the block strike the horizontal part after leaving the semicircular track ?
Mass of block = 490 gm
Mass of bullet = 10 gm
Since the bullet embedded inside the block,
it is a plastic collision
Initial velocity of bullet
v1=50 √7 m/s
Velocity of the block is v2=0
Let final velocity of both = v
Hence 10×10−3×50 √7+490×10−3×0=(490+10)
=10−3×VA
∴ VA=√7 m/s
When the block loses the contact at 'D' the component mg will act on it,
m(VB)2r=mg sin θ
⇒ (VB)2=gr sin θ ...(i)
Putting work energy principle
(12)m×(VB)2−(12)×m×(VA)2=−mg (0.2+0.2 sin θ)
⇒ (12)×gr sin θ−(12)×(√7)2=g (0.2+0.2 sin θ)
⇒ 3.5−(12)+9.8+0.2+sin θ=9.8+0.2 (1+sin θ)
⇒ 3.5−0.98 sin θ=1.96+1.96 sin θ
⇒ sin θ=(12)
⇒ θ=30∘
∴ Angle of projection = 90∘−30∘=60∘
∴ time of reaching the ground = √2hg
=√2×(0.2+0.2×sin 30∘)9.8=0.247 sec
⇒ Distance travelled in horizontal direction
S=v cos q×t
=√gr sin θ cos θ×t
=√9.8×2×(12)√32×0.247
=0.196 m
Total distance = (0.2−0.2 cos 30∘+0.196)
=0.22 m