wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

A bullet of mass 10 g travelling horizontally with a velocity of 150 m s−1 strikes a stationary wooden block and comes to rest in 0.03 s. Calculate the distance of penetration of the bullet into the block. Also calculate the magnitude of the force exerted by the wooden block on the bullet.

Open in App
Solution

Now, it is given that the bullet is travelling with a velocity of 150 m/s.

Thus, when the bullet enters the block, its velocity = Initial velocity, u = 150 m/s

Final velocity, v = 0 (since the bullet finally comes to rest)

Time taken to come to rest, t = 0.03 s

According to the first equation of motion, v = u + at

Acceleration of the bullet, a

0 = 150 + (a ×0.03 s)

(Negative sign indicates that the velocity of the bullet is decreasing.)

According to the third equation of motion:

v2 = u2 + 2as

0 = (150)2 + 2 (−5000) s

Hence, the distance of penetration of the bullet into the block is 2.25 m.

From Newton’s second law of motion:

Force, F = Mass × Acceleration

Mass of the bullet, m = 10 g = 0.01 kg

Acceleration of the bullet, a = 5000 m/s2

F = ma = 0.01 × 5000 = 50 N

Hence, the magnitude of force exerted by the wooden block on the bullet is 50 N.


flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Newton's Second Law
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon