q0=C0V0
After charging q1=q0(C0C0+C)
After discharging and again charging first time,
q01=(C0V0)C0(C0+C)=C02V0(C0+C)
V01=C0V0(C0+C)
q02=(q01)C0C0+C=C02V0(C0+C)2
V02=(C0C0+C)2V0
After nth charging
V0n=V=(C0C0+C)nV0
or (C0C0+C)n=(V0V)
CC0+1=(V0V)1/n
or C=C0(V0V)1/n−C0=C0[(V0V)1/n−1]