A certain two-digit number whose digits when added give a sum of 9. If the digits are reversed, a new number is formed, which when decreased by 9 is equal to 4 times the original number. Find the original number.
18
Let the digit in tens place be x and digit in unit’s place be y.
Then, the number is 10x + y and sum of digits is x + y.
When the digits are reversed, the new number is 10y + x .
x+y=9.........................(i)
10y+x-9=4(10x+y)
⇒ x-40x+10y-4y=9
⇒ -39x+6y=9
⇒39x-6y=-9
⇒13x-2y=-3 .........................(ii)
From (i), x+y=9
x=9-y
On substituting x=9-y in (i), we get
13(9-x)-2y=-3
⇒117-13y-2y=-3
⇒-15y=-3-117
⇒-15y=-120
⇒y=−120−15=8
On substituting y=8 in (i), we get
x+8=9
⇒ x=9-8=1
∴ The required original number is
10x+y=10 ×1+8
=10+8=18