A charge +q is fixed at each of the point x=x0,x=3x0,x=5x0... upto infinity and a charge −q fixed at each of the points x=2x0,x=4x0,x=6x0... upto infinity. Here x0 is a positive constant. The potential at the origin due to this system of charges is
Potential due to +q charges,
V1=14πε0{qx0+q3x0+q5x0+....∞}
Potential due to −q charges,
V2=14πε0{−q2x0+−q4x0+−q6x0+...∞}
Total potential at the origin,
V=V1+V2
⇒V=14πε0{qx0+q3x0+q5x0+....∞}+14πε0{−q2x0+−qx0+−q6x0+...∞}
⇒V=14πε0qx0{1−12+13−14+15−16+...∞}
[loge(1+x)=x−x22+x33−x44......∞]
⇒V=q4πε0x0loge(1+1)
⇒V=qloge(2)4πε0x0
Hence, option (d) is the correct answer.