The correct option is A (^i+^j+^k) Wb/m2
Given:
v1=(1^i) m/sv2=(1^j) m/sF1=q(−^j+^k) NF2=q(^i−^k) N
Let the magnetic field at the point be,
→B=(x^i+y^j+z^k) Wb/m2 ...(1)
Force experienced by charge particle q moving with velocity→v in the magnetic field →B is given by →F=q(→v×→B)⇒−→F1=q(→v1×→B)
⇒q(−1 ^j+1 ^k)=q[(1 ^i)×(x ^i+y ^j+z ^k)]
⇒−1 ^j+1 ^k=y ^k−z ^j
Comparing LHS and RHS we get,
y=1 and z=1
Substituting the values of y and z in Eq. (1), we get,
→B=x ^i+^j+^k ...(2)
Similarly,
−→F2=q(→v2×→B)
⇒q(^i−^k)=q[(1 ^j)×(x ^i+y ^j+z ^k)]
⇒ ^i−^k=−x ^k+z ^i
Comparing LHS and RHS, we get,
x=1
Substituting the value of x in Eq. (2), we get,
→B=(^i+^j+^k) Wb/m2
<!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}-->
Hence, option (A) is the correct answer.