A chord of a circle is equal to the radius of the circle. Then the angle subtended by the chord at a point on the minor arc and the also at a point on the major arc are respectively
A
120o&60o
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
130o&50o
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
140o&40o
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
150o&30o
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is B150o&30o Given−OisthecentreofacirclewithABasachord.AB=theradiusOAorOB.ABsubtends∠ACBtothemajorarcAPRBatCand∠ADBtotheminorarcADBatDTofindout−∠ADB=?Solution−OA=OB=AB(given).∴ΔOABiseqilateral.i.e∠AOB=60oandreflex∠AOB=360o−60o=300o.So∠ADB=12reflex∠AOB=12×300o=150o.(sincetheangle,subtendedbyachordofacircleatthecentre,isdoubletheanglesubtendedbythesamechordatthecircumferenceofthecircle.)......(i)Bythesameargumentas(i),weget,∠ACB=12∠AOB=12×60o=30o.soangles,subtendedbyABtotheminorarc&themajorarc,arerespectively150o&30o.Ans−OptionD.