We have,
In a circle,
Radius
r=12cm.
θ=120o
Area of segment APB= Area of sector OAPB -Area of ΔOAB
Area of sector OAPB
=θ360o×πr2
=120o360×3.14×(12)2
=13×3.14×144
=3.14×4×12
=3.14×48
=150.72cm2
Finding area of triangle ΔAOB
AreaofΔAOB=12×Base×Height
We draw
$\begin{align}
OM⊥AB
∴∠OMB=∠OMA=90o
In
ΔOMAandΔOMB
∠OMA=∠OMB(Both90o)
OM=OM(Bothradius)
OA=OB(Commonline)
∴ΔOMA≅ΔOMB(S.A.S.Congurency)
⇒∠AOM=∠BOM
Then,
BM=AM=12AB.......(1)
Now,
∠AOM=∠BOM=12∠BOA
=12×1200
=60o
In right angle triangle OMA
sinO=AMAO
sin60o=AM12
√32=AM12
AM=6√3
Again, In right angle triangle OMA
cosO=OMAO
cos60o=OMAO
12=OM12
OM=6cm.
Now, from equation (1) and we get,
AM=12AB
2AM=AB
AB=2AM
AB=2×6√3∴AM=6√3
AB=12√3cm.
Now,
AreaofΔAOB=12×Base×Height
=12×AB×OM
=12×12√3×6
=36√3
=36×1.73
62.28cm2
Hence, the Area of segment of
APB=AreaofsectorOAPB−AreaofΔOAB
=150.72−62.28
=88.44cm2
Hence, this is the answer.