Question 7
A chord of a circle of radius 12 cm subtends an angle of 120∘ at the center. Find the area of the corresponding segment of the circle. (Use π=3.14 and √3=1.73)
Radius of the circle, r = 12 cm
Draw a perpendicular OD to chord AB. It will bisect AB.
∠A=180∘−(90∘+60∘)=30∘
cos 30∘=ADOA
⇒√32=AD12
⇒AD=6√3cm
⇒AB=2×AD=12√3cm
sin 30∘=ODOA
⇒12=OD12
⇒OD=6cm
Area of ΔAOB=12×base×height
=12×12√3×6=36√3cm
=36×1.73=62.28 cm2
Angle made by Minor sector =120∘
Area of the sector making angle 120∘=(120∘360∘)×πr2 cm2
=(13)×122πcm2=1443πcm2
=48×3.14 cm2=150.72 cm2
∴ Area of the corresponding Minor segment = Area of the Minor sector - Area of ΔAOB
=150.72 cm2−62.28 cm2
=88.44 cm2