In a given circle, Radiusr=15cm
And θ=60∘
Area of segmentAPB=Area of sector OAPB−Area of △OAB
Ares of sectorOAYB=θ360×πr2
60360×3.14×15×15=117.75cm2
Area of △AOB=12×b×h
We draw OM perpendicular to AB
∴∠OMB=∠OMA=90∘
In △OMA and △OMB
∠OMA=∠OMB=90∘
OA=OB(both radius)
OM=OM(common)
∴△OMA≅△OMB(by R.H.S congruency)
⇒∠AOM=∠BOM by C.P.C.T
∴∠AOM=∠BOM=12∠BOA
⇒∠AOM=∠BOM=12×60∘
Also, since △OMB≅△OMA
∴BM=AM by CPCT
⇒BM=AM=12AB .......(1)
In rightangled triangle OMA
sin30∘=AMAO=AM15⇒AM=152
In △OMA
cos30∘=OMAO⇒OM=√32×15
From (1)
AM=12AB
⇒2AM=AB
Put the value of AM
⇒AB=2×152=15cm
Now, Area of △AOB=12bh=12×AB×OM
=12×15×√32×15=97.3125cm2
Area of segment APB=Area of sector OAPB−Area of △OAB
=117.75−97.3125=20.4375cm2
Thus, area of minor segment=20.4375cm2
Now, Area of major segment=Area of circle−Area of minor segment
=πr2−20.4375=3.24×15×15−20.4375=706.5−10.4375=686.0625cm2