A chord of a circle of radius 30 cm makes an angle of 60^\circ at the centre of the circle. Find the areas of the minor and major segments.
[ Takeπ=3.14and√31.732. ]
In a given circle,
radius, r = 30 cm
And θ=60o
Area of segment APB = Area of sector OAPB - Area of △OAB
Area of sector OAPB =θ360×πr2=60360×3.14×(30)2=471 cm2
Finding the area of △ AOB
Area △ AOB =12× Base × Height
We draw OM ⊥ AB
∠ OMB = ∠ A OMA = 90°
In △ OMA & △ OMB
∠ OMA = ∠ OMB (Both 90°)
OA = 0B (Both radius)
OM = OM (Common)
△ OMA ≅ △ OMB (By R. H.S congruency)
⇒∠ AOM = ∠ BOM (CPCT)
∠ AOM =∠ BOM =12∠ BOA
⇒∠AOM =∠BOM = 12×60o=30o
Also, since △ OMB ≅△ OMA
BM = AM (CPCT)
BM = AM = 12AB -----(1)
In right triangle △OMA,
sin O=AMAOsin 30=AM3012=AM30AM=302=15
cos O=OMAOcos 30=OM30√32=OM30OM=30√32=15√3
From (1),
AM = 12AB
AB = 2AM = 2 × 15 = 30 cm
Area of △AOB =12×base×height=12×AB×OM=12×30×15√3=389.25 cm2
Area of segment APB = Area of sector OAPB - Area of △OAB
= 471 - 389.25 = 81.75 cm2
Area of minor segment = 81.75 cm2
Area of major segment = Area of circle - Area of minor segment
= πr2−81.75=3.14×302−81.75=2826−81.75=2744.25 cm2