wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

A chord of length 16 cm is at a distance of 15 cm from the centre of the circle. The length of the chord of the same circle which is at a distance of 8 cm from the centre is

A
15cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
16cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
24cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
30cm
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D 30cm
GivenOisthecentreofacircleAB=16cmisachordofthegivencircleandABisatadistanceof15cmfromO.AnotherchordCDisatadistanceof8cmfromO.TofindoutThelengthofCD=?.SolutionWejoinOAanddropaperpendicularONtoAB.ONmeetsABatN.soOAistheradiusofthecircleAgainONistheperpendiculardroppedfromOtoABatN.ONistheperpendiculardistanceofABfromO.SoON=15cm&ONA=90o.NowAB=2ANsincetheperpendicular,droppedfromthecentreofacircletoitsanychordbisectsthelatter.AN=12AB=12×16cm=8cm.ΔOANisarighttrianglewithOAashypotenuse.So,applyingPythagorastheorem,wegetOA=ON2+AN2=152+82cm=17cm.NowinΔOMCOM=8cmandOC=OA=17cm(radiiofthesamecircle).AlsoOMC=90osinceOMistheperpendiculardistanceofCDfromOi.eOMCD.SoΔOMCisarightonewithhypotenuseasO.applyingPythagorastheorem,wegetCM=OC2OM2=17282cm=15cm.ButOMCDi.eCD=2CMsincetheperpendicular,droppedfromthecenterofacircletoanyofitschord,bisectsthelatter.CD=2×15cm=30cm.Sothelengthofthechordatadistanceof8cmfromthecentreofthegivencircleis30cm.AnsOptionD.
296921_243285_ans.png

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Chord Properties of Circles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon