A chord of length 16 cm is drawn in a circle of radius 10 cm. The distance of the chord from the centre of the circle is
A
8 cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
12cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
6cm
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
10cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B 6cm Given−Oisthecentreofacircleofradius10cm.ABisachordofthegivencircleandABisatadistanceof6cmfromO.Tofindout−ThelengthofAB=?.Solution−WejoinOAanddropaperpendicularONtoAB.ONmeetsABatN.NowAN=12ABsincetheperpendicular,droppedfromthecentreofacircletoitsanychordbisectsthelatter.∴AN=12×16cm=8cm.AgainOAistheradiusofthecircleandOA=10cmandONistheperpendiculardroppedfromOtoABatN.∴ONistheperpendiculardistanceofABfromO.∴ΔOANisarighttrianglewithOAashypotenuse.So,applyingPythagorastheorem,wegetON=√OA2−AN2=√102−82cm=6cm.Ans−OptionC.