A chord of length 24 cm is at a distance of 5 cm from the centre of the circle. Find the length of the chord of the same circle which is at a distance of 12 cm from the centre.
10 cm
A circle with centre O and radius OA
Chord AB = 24 cm
OM ⊥ AB which bisects it at M.
∴ OM = 5 cm and
AM=12 AB=12×24=12cm
Now in right ΔOAM,
OA2=AM2+OM2 (Pythagoras Theoram)
=(12)2+(5)2=144+25=169
∴ OA=√169=13cm
Again OA = 13 cm and distance from the centre is 12 cm.
Again in right ΔONA,
∴ AO2=ON2+NA2
⇒ (13)2=(12)2+NA2 169=144+NA2
⇒ NA2=169−144=25=(5)2
⇒ NA=5cm
Hence AC=2×NA=2×5=10 cm