Let equation of the circle C1 be x2+y2+2gx+2fy+c=0 ...(1)
This passes through (0,0)
∴c=0
The centre (−g,−f) of eqn(1) lies on the line y=x
∴g=f
Also, eqn(1) cuts the circle x2+y2−4x−6y+10=0 orthogonally.
∴2(−2g−3f)=c+10
⇒−10g=10 [∵g=f and c=0]
⇒g=f=−1
Hence, equation of the circle C1 is x2+y2−2x−2y=0
radius, r=√(1)2+(1)2=√2