The correct option is
C 169 cmAs shown in figure,
PQ=4+16=20
PB=4, QC=20
Refer the figure and constructions made in the figure.
Let OB=x and OC=y
Let radius of smaller circle touching other two circles orthogonally is r.
∴AB=RO=DC=r
Now, PA=PB−AB
∴PA=4−r
Similarly, PR=4+r
In right angled triangle △PAR, by Pythagoras theorem,
PR2=PA2+AR2
∴(4+r)2=(4−r)2+AR2
∴16+8r+r2=16−8r+r2+AR2
∴AR2=16r
Taking square roots on both sides, we get,
∴AR=4√r
But, AR=BO=x
∴x=4√r
Now, QD=QC−DC
∴QD=16−r
Similarly, QR=16+r
In right angled triangle △QDR, by Pythagoras theorem, we get,
QR2=QD2+RD2
∴(16+r)2=(16−r)2+RD2
∴256+32r+r2=256−32r+r2+RD2
∴RD2=64r
Taking square roots n both sides,
∴RD=8√r
But, RD=OC=y
∴y=8√r
Now, consider right angled triangle PQS
By Pythagoras theorem,
PQ2=PS2+QS2
∴(20)2=(x+y)2+(16−4)2
∴400=(x+y)2+144
∴(x+y)2=400−144
∴(x+y)2=256
Taking square roots on both sides, we get,
∴x+y=16
∴4√r+8√r=16
∴12√r=16
∴√r=1612=43
Squaring both sides, we get,
∴r=169
Thus, answer is option (C)