Let the end points of the focal chord be P(at21,2at1) and Q(at22,2at2)
Slope of PQ=2at2−2at1at22−at21
2at2−2at1at22−at21=m2a(t2−t1)a(t2−t1)(t2+t1)=m⇒t1+t2=2m......(i)
Equation of circle is
(x−at21)(x−at22)+(y−2at1)(y−2at2)=0x2−ax(t21+t22)+a2t21t22+y2−2ay(t1+t2)+4a2t1t2=0
x2−ax((t1+t2)2−2t1t2)+a2t21t22+y2−2ay(t1+t2)+4a2t1t2=0
For focal chord t1t2=−1
x2−ax((t1+t2)2+2)+y2−2ay(t1+t2)−3a2=0
Substituting (i)
x2−ax(2+4m2)+y2−2ay2m−3a2=0x2−2ax(1+2m2)+y2−4aym−3a2=0
Hence proved.