Given parabola is y2=20x
Extremities of the latus rectum of the parabola are
(5,10) and (5,−10)
Let the center of the circle be (h,k) and radius is r, then
(x−h)2+(y−k)2=r2
This circle passes through (5,10) and (5,−10), then
(5−h)2+(10−k)2=r2⋯(1)(5−h)2+(−10−k)2=r2⋯(2)
From equation (1) and (2), we get
k=0
(5−h)2+100=r2⋯(3)
The circle touches the directrix x=−5
|h+5|1=r⇒(h+5)2=r2
Using equation (3), we get
⇒(h+5)2=(5−h)2+100⇒h=5∴r=10 units