A circle passes through the three points of an ellipse x29+y24=1, whose eccentric angles are π2,π4,π4. Find the centre of circle.
If a circle passes through three points on ellipse whose eccentric angles are α,β,γ then its center (h,k) is given by,
h={(a2−b24a)(cosα+cosβ+cosγ+cos(α+β+γ))}k={(b2−a24b)(sinα+sinβ+sinγ−sin(α+β+γ))}⇒h={(9−412)(cosπ2+cosπ4+cosπ4+cos(π2+π4+π4))}⇒h=512(0+1√2+1√2−1)=5(√2−1)12⇒k={(4−98)(sinπ2+sinπ4+sinπ4−sin(π2+π4+π4))}⇒k=−58(1+1√2+1√2−0)=−5(√2+1)8
So, the coordinates of centre of circle are (5(√2−1)12,−5(√2+1)8).
None of the options are correct.