Let
C be the center of the circle
≡(h,k)
radius be a, then equation of the circle will be
(x−h)2+(y−k)2+2(x−h)(y−k)cosω=a2.....1
By △CMN;−
CN=CMsinω
a=ksinω.....2
Equation of y axis is x=0....3
Solving 1 and 3
h2+y2+k2−2yk−(2hy−2hk)cosω=a2
or y2−2y(k+hcosω)+h2+k2+2hkcosω=a2......4
If A and B be the points of intersection having co ordinates (O,y1)&(O,y2)
AB=y2−y1=2l
(y2+y1)2−4y1y2=(2l)2.....5
y1+y2=−2(k+hcosω)
y1y2=h2+k2+2hkcosω−a2
Putting in 5 we get
4(k+hcosω)2−4(h2+k2+2hkcosω−a2)=4l2
or k2sin2ω−h2(1−cos2ω)=l2
or (k2−h2)=l2sin2ω
Therefore Locus is
y2−x2=l2sin2ω=l2csc2ω