A circle touches the line y=x at a point P such that OP=4√2, where O is the origin. The circle makes an intercept of 6√2 units on line x+y=0. Then the equation of the circle(s) is/are
A
(x−9)2+(y+1)2−50=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
(x−1)2+(y+9)2−50=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
(x+1)2+(y−9)2−50=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
(x+9)2+(y−1)2−50=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct options are A(x−9)2+(y+1)2−50=0 B(x−1)2+(y+9)2−50=0 C(x+1)2+(y−9)2−50=0 D(x+9)2+(y−1)2−50=0 Let AB be the length of chord intercepted by circle on y+x=0 Let CM be perpendicular to AB from centre C(h,k).
Also, y−x=0 and y+x=0 are perpendicular to each other. ∴OPCM is rectangle. ∴CM=OP=4√2. and AB=6√2 Now AB=2AM=2√r2−(CM)2 ⇒r=5√2
Again y=x touches the circle. ∴CP=r ⇒∣∣∣h−k√2∣∣∣=5√2⇒h−k=±10…(1) Also, CM=4√2 ⇒∣∣∣h+k√2∣∣∣=4√2⇒h+k=±8…(2) Solving equations (1) and (2), we get the possible centres as (9,−1),(1,−9),(−1,9),(−9,1)
∴ Possible circles are (x−9)2+(y+1)2−50=0 (x−1)2+(y+9)2−50=0 (x+1)2+(y−9)2−50=0 (x+9)2+(y−1)2−50=0