The correct option is
B x2+y2+18x−2y+32=0Let
C(α,β) be the center of the circle touching
OP at
P and making intercept
AB=6√2 on the line
x+y=0 as shown in the figure.
If r is the radius of the circle, then
r2=AC2=CL2+LA2=(α+β√2)2+(3√2)2 ...(1)
Since OP=4√2
∴OC2=CP2+PO2⇒α2+β2=r2+(4√2)2 ...(2)
From (1) and (2), we get
α2+β2=(α+β√2)2+18+32
⇒(α2+β2)−(α+β)22=50⇒(α−β)2=100⇒α−β=±10 ...(3)
Also, CP=r⇒r=∣∣∣α−β√2∣∣∣⇒r2=(α−β)23 ...(4)
From (3), and (4), we get
r2=(5√2)2⇒r=5√2.
Substituting r=5√2 in (1), we get
(5√2)2=(α+β√2)2+18
⇒32=(α+β)22⇒(α+β)2=64⇒α+β=±8 ...(5)
From (3), and (5), we get
α=9,β=−1 or α=−9,β=1
or α=1,β=−9 or α=−1,β=9.
Since Q(−10,2) lies in the interior of the circle,
∴CQ must be less than 5√2.
Thus, centre of the circle must be (−9,1)
Therefore, the equation of the required circle is
(x+9)2+(y−1)2=(5√2)2⇒x2+y2+18x−2y+32=0.