A circle touches the sides of a quadrilatieral ABCD at P, Q, R, S respectively. The angles subtended at the centre by a pair of opposite sides have theirs sum as:
Open in App
Solution
ABCD is a quadrilateral circumscribing the circle with a center O. ABCD touches the circle at points, P,Q,R and S. In △AOP and △AOS. AP=AS(Length of tangents draw from external point to a circle are equal) AO=AO(Common) OP=OS(both radius) ∴△AOP≅△AOS(SSS congruence rule) ∠AOP=∠AOS(CPCT) Now lets number the angles for it to look easier. Q from the above conclusion, we can prove. ∠2=∠3⟶(1)∠4=∠5⟶(2)∠6=∠7⟶(3) Now, ∠1+∠2+∠3+∠4+∠5+∠6+∠7+∠8=360°(sum of circle round a point is 360°) ∠1+∠2+∠2+∠5+∠5+∠6+∠6+∠1=360°(from (1),(2),&(3)) 2(∠1+∠2+∠5+∠6)=360°(∠1+∠2)+(∠1+∠2)=180∠AOB+∠COD=180 Thus, both the angles are supplementary. similarly, we can prove ∠BOC+∠AOD=180. Hence proved