The correct option is D A hyperbola
If the circle x2+y2+2gx+2fy+c=0 touches the x-axis,
Then −f=√g2+f2−c⇒g2=c………(i)
And cuts a chord of length 2l from y - axis
⇒2√f2−c=2l⇒f2−c=l2…………..(ii)
Subtracting (i) from (ii), we get f2−g2=l2.
Hence the locus is y2−x2=l2, which is a rectangular hyperbola.