The correct option is D (1.0051)1/2 cm
Given that D1=1 cm, θ1=0∘C, D2=?
θ2=100∘C and α=2.55×10−5/∘CΔT=100∘C
Coefficient of superficial expansion of aluminium =β=2α=5.10×10−5/∘C
Surface area of the hole at \(0^{\circ}C\)
A1=πD214=π4(10−2)2
The surface area of hole at \(100^{\circ}C\) is given by
A2=A1(1+βΔT)=π4(10−2)2[1+5.1×10−5×100]
If D2 is the diameter of the hole at \(100^{\circ}C\), then A2=π4
Hence πD224=π4×10−4[1+5.1×10−3]or, D22=10−4×1.0051or, D2=10−2×(1.0051)1/2m=(1.0051)1/2cm