Given:- Circular park with radius 20m. Let Ankur Syed and David be donated by points A,S&D respectively. Given all there are sitting at equal distance i.e AS=SD=AD
To find: Length of AS=SD=AD
Explanation: LEt AS=SD=AD=2x [Ref. image 1]
In ASD, all sides are equal,
∴ASD is equilateral triangle
We draw OP⊥SD (perpendicular drawn from centre of circle to a chord of the chord)
So, SP=DP=12SD [Ref. image 2]
⇒SP=DP=2x2=x
Join OS & AO
In ΔOPS
By Pythagoras theorem
OS2=OP2+PS2
(20)2=OP2+x2
(400)=OP+x2
400−x2=OP2
OP=√400−x2
In △APS
By Pythagoras theorem
AS2=AP2+PS2
(2x)2=AP2+x2
$4x^2 = AP^2+x^2
4x2−x2=AP2
3x2=AP2
AP=√3x
Now
AP=AO+OP (Medium of equilateral triangle passes through its circum center)
√3x=20+√400−x2 [Ref. image 3]
√3x−20=√400−x2
√400−x2=√3x−20
Squaring on both sides
(√400−x2)2=(√3x−20)2
400−x2=(3x2+(20)×20−2×(√3x)×20
⇒400−x2=3x2+400−40√3x
⇒400−400+40√3x=3x2+x
⇒40√3x=4x2
⇒4x2=40√3x
⇒x2x=404√3
⇒x=10√3m